# EXEJECH 

Manufacturer of True Sine Wave Power Inverters and Related Products

## MX SERIES POWER INVERTERS



MX SERIES FAMILY

## - $\mathbf{N + 1}$ REDUNDANT

- EXPANDABLE
- REMOTE SWITCHING
- TRUE SINE WAVE
- "HOT" INSERTABLE
- 1000 WATT MODULES

REMOTE METERING

## ADJUSTABLE POWER

EXELTECH manufactures the world's first truly redundant, modular inverter system; the most reliable inverter system available. No single malfunction will cause the inverter system to fail. Modules are "hot" insertable. Power levels are expandable, and modules can be added or replaced without interruption in power to your critical loads.

The MX system can be configured for power levels from 1 to 20KW with 120 Vac output. Up to 40 KW at 240 Vac bi-phase or 60 KW at 208 Vac 3 phase with many input and output voltages also available.

A control card and any number of additional 1000 Watt power modules combine to make a standard inverter. This type of system can be expanded as power requirements increase, and upgraded to be $\mathrm{N}+1$ redundant as desired.

The MX system is extremely compact and lightweight. Power modules weigh only 7 lbs. Each.

Output voltage is precisely regulated, so that no measurable voltage change occurs on the output as input voltage fluctuates. Similarly, less than 0.5 volt change in output voltage will occur when the output load varies from 0 to $100 \%$ of rated power. With distortion of $2 \%$ maximum, this inverter offers the cleanest sine wave power available.

Models are available which cover all standard battery systems. Custom models can be designed to meet your specific input voltage requirements.

## MX SERIES MODULE DESCRIPTION

The Exeltech MX Series of inverters is a modular system which can be assembled in many combinations to afford the user infinite flexibility. All $\boldsymbol{M} \boldsymbol{X}$ systems feature manual power adjustment allowing power modules not in use to be turned off, reducing "no load" current drain. Options such as AC distribution, AC disconnect, metering, DC disconnect, DC distribution, transfer switch and maintenance bypass switch are also available; (see accessories).

The building blocks of the system are as follows:
1.) Power Module - A 1000 Watt slave power inverter. It requires drive signals from a Master Module or Control Card as described below. This module is the backbone of the inverter system.
2.) Master Module - A 1000 Watt power inverter which contains all the electronics necessary to operate. Requires an enclosure to provide connections to the battery and AC output. It can also operate up to 19 slave Power Modules. If this module is used, the system cannot be fully redundant.
All MX systems require either a master module or at least one control card.
3.) Control Card - Generates all the signals necessary to operate up to 20 Power Modules. The card itself will not generate any AC output power nor does any power flow through it. This card can be paralleled with another Control Card to generate a redundant set of control signals to form the basis of a completely redundant inverter system.
All MX systems require either a master module or at least one control card.
4.) Alarm Card - Can be used in conjunction with a redundant or non redundant inverter to provide various alarm output signals via LED's and alarm contact closures. Must be included in redundant systems to detect failure of control card.
5.) Transfer Switch - Provides the same functions as the alarm card, plus provides a relay to transfer AC power to the load, from either the inverter or the utility input. Use only with systems 7 KW of or less.

The above modules can be placed in the following enclosures; Installations can either be free standing or in standard relay racks.
1.) 19 " cage assembly - Compatible with a 19 " relay rack. The smallest cage which can contain a redundant system. Available in the following configurations:
19A - Basic configuration for a redundant system. Holds up to 4 Power Modules, 2 Control Cards and either a Transfer Switch or an Alarm Card.
19B - Used as an expansion rack or may be used as an expandable, non redundant inverter, up to 5 KW . This configuration will not accept X-fer Switch, alarm card or control cards.
2.) 23 " cage assembly - Compatible with a 23 " relay rack.

23A - Basic configuration for a redundant system. Holds up to 5 Power Modules, 2 Control Cards and either a Transfer Switch or an Alarm Card.
23B - Used as an expansion rack or may be used as an expandable, non redundant inverter, up to 6 KW .
This configuration will not accept X-fer Switch, alarm card or control cards.
3.) 7 " cage assembly - for 1 or 2 KW systems when redundancy is not required.

7C - Consists of 1 Transfer Switch and 1 Master Module.
This configuration will not accept an alarm card or control cards.
7B - Expandable up to 2KW. 1 Master Module and 1 Power Module.
This configuration will not accept $X$-fer switch, alarm card or control cards.
4). 9 " cage assembly- for $1-3 \mathrm{KW}$ systems when redundancy is not required.

9C - Consists of Transfer Switch, 1 Master Module and 1 Power Module.
This configuration will not accept an alarm card or control cards.
9B - Expandable up to 3 KW .1 Master Module and 2 Power Modules.
This configuration will not accept X-fer Switch, alarm card or control cards.

## MX SERIES SYSTEM DESCRIPTION

The Exeltech $\boldsymbol{M} \boldsymbol{X}$ Series of inverters is available in three basic architectures; redundant, upgradable and expandable. Different options and sizes are available to fit varying applications. As a benefit of the $\boldsymbol{M} \boldsymbol{X}$ series modular design, power levels are expandable in any system, as power requirements increase.
1.) $\mathbf{N}+1$ Redundant-Expandable Inverter System: For applications where reliability and maintainability are paramount, the $\mathrm{N}+1$ redundant system offers the most cost effective method of achieving redundancy and the ability to maintain the system while loads remain on line. All cards (except 12 Vdc ) are "hot" insertable to allow maintenance without interrupting power to critical loads. Designing the power level with $\mathrm{N}+1$ number of power modules, allows for redundancy without necessitating the purchase of a duplicate system. (An A/B Buss option is available, which adds to system reliability).

## A redundant system consists of:


2.) Upgradable Inverter System: The Upgradable system offers the flexibility to add a X-fer switch or alarm card and Full Redundancy for future requirements. A minimum system with as little as one control card and one power module can be upgraded in the future to include additional power modules, X-fer switch or alarm card and an additional control card for full redundancy (see figure II).

## MX SERIES SYSTEM DESCRIPTION

Figure II.


1 ea. Control Card part \# L*(100 Vac) part \# P (100 Vac)

$$
\begin{array}{ll}
\mathrm{C}^{*}(120 \mathrm{Vac}) & \mathrm{P}(120 \mathrm{Vac}) \\
\mathrm{E}^{*}(230 \mathrm{Vac}) & \mathrm{R}(230 \mathrm{Vac})
\end{array}
$$

1 ea. Cage assembly part \# 1A (19" cage) 2A (23" cage)

## Options:

1 ea. X-fer Switch part \# G (100 Vac)

X (120 Vac)
Z (230 Vac)
1 ea. Alarm Card part \# H (100 Vac)

A (120 Vac)
F (230 Vac)
3.) Expandable inverter system:This configuration can be used as an independent inverter system (figure III), or to expand power levels of existing $\boldsymbol{M} \boldsymbol{X}$ systems (see stacked systems). By using one master module, a system may be expanded to include a X-fer switch and additional power modules(see figure IV). 1 KW inverters with a X-fer switch use the 7"or 9" (part \# 7C, 9C) cage. 1KW, 2KW and 3KW inverters without a X-fer switch use the 7" or 9" (part number 7B, 9B) cage assembly.

Figure III.

1 ea. Cage assembly
part \# 1A (19" cage) 2A (23" cage) 7C (7" cage) 9C (9" cage)

1 ea. Cage assembly_ part \# 1B (19" cage) 2B (23" cage) 7B (7" cage) 9B (9" cage) expansion rack (see stacked systems)

Options:

1 ea. X-fer Switch part \# G (100 Vac) | $\mathrm{X}(120 \mathrm{Vac})$ | $\mathrm{M}^{*}(120 \mathrm{Vac})$ |
| :--- | :--- |
| $\mathrm{Z}(230 \mathrm{Vac})$ | $\mathrm{N}^{*}(230 \mathrm{Vac})$ | 1 ea. Master Module ${ }^{1}$ part \# Q* (100 Vac)



Figure IV.
part \# Q* (100 Vac) part \# P (100 Vac) M* (120 Vac) P (120 Vac) O* (230 Vac) $\quad \mathrm{R}(230 \mathrm{Vac})$


[^0]
## MX SERIES SYSTEM PART NUMBER

Use the chart on page 7 to formulate the 15 digit model number.

## EXELTECH MX SERIES

 MODEL NUMBERStep 1: Enter the two character code for cage assembly size and configuration.
Step 2: When a transfer switch or alarm card is used, enter the single character code for that card. 2nd and 3rd characters designate option level of transfer switch or alarm card. Enter 00 for standard module, if no alarm card or transfer switch use "B" configuration backplane, enter (***).
Step 3: Alpha character assigned by EXELTECH to represent changes or revision levels in racks, alarm cards, or transfer switch. Enter(-). EXELTECH will assign revision level. See revision level chart on www.exeltech.com for the most current revision list.
Step 4: Enter the two character code for Control Card(s) or Master Module. There is not an application where both are used. Enter ( $\mathrm{M}^{*}$ ) or ( $\mathrm{C}^{*}$ ) if only one is used.
Step 5: To designate power level, enter the number of power modules required. Redundant systems require continuous load rating plus one additional power module(* if none used).
Step 6: To designate output voltage of the power module required, enter the single character code(* if none used).
Step 7: Single alpha character assigned by EXELTECH represents changes or revision levels in Control Cards, Master Modules, or Power Modules. Enter (-). EXELTECH will assign revision level. See revision level chart on www.exeltech.com for the most current revision list.
Step 8: To designate input voltage, enter the single character from the VDC voltage chart below.

| Vacinut volimge chart |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DC Volts | 12 | 24 |  | 4 |  |  |  |
| Designatio | 1 | 2 | B | 1 |  |  |  |

Step 9: Output frequency is designated by using the first number of the frequency ( 5 for $50 \mathrm{~Hz}, 6$ for $60 \mathrm{~Hz}, 4$ for 400 Hz ).
Step 10: For options, enter two digit code. If no option, enter (00).
EXAMPLE: A redundant system with an alarm card, to fit a 23 " wide cage, for powering a 4000 watt continuous load, at 120 Vac , 60 Hz with 48 Vdc input would require the following model number...
2AA00ACC5P-4600

## MX SERIES MODULE PART NUMBER

## EXELTECH MX SERIES MODULE NUMBER

Step 1: Model number always starts
 with MX.

Step 2: To designate a cage assembly, enter the two character code from the chart on page 7 . When ordering a power module or master module, enter a "K". If ordering any other module, enter an asterisk(*).
Step 3: To designate the type of module, enter the single character code from the chart on page 7. To designate cage assembly, enter an asterisk(*).
Step 4: To designate input voltage, enter the single character code from the Vdc INPUT VOLTAGE CHART below. If ordering an alarm card, transfer switch or cage assembly, enter an asterisk(*).

| vac input volutie chart |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DC Volts | 12 | 24 | 32 | 48 | 66 |  |


| Designation | 1 | 2 |  | B | 4 | E |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Step 5: Output frequency is designated by using the first number of the frequency ( 5 for $50 \mathrm{~Hz}, 6$ for $60 \mathrm{~Hz}, 4$ for 400 Hz ). If ordering a transfer switch, alarm card, power module or cage assembly, enter an asterisk(*).
Step 6: This space designates current revision level,and is for EXELTECH use only. If no revision is in use for this module, no number or character will be used.
Step 7: To designate option, enter the code from the option chart below. If no option is required please leave blank.

| OPTION CHART |  |
| :--- | :---: |
| Option | Code |
| Conformal coating | 07 |
| Low idle current | 08 |

MODULE EXAMPLES: A $12 \mathrm{Vdc}, 120 \mathrm{Vac}, 60 \mathrm{~Hz}$ master module would require the following module number... MXK-M-1-6-1

A $48 \mathrm{vdc}, 120 \mathrm{Vac}, 60 \mathrm{~Hz}$ power module with conformal coating option would require the following module number...
MXK-P-4-*-1-07
CAGE ASSEMBLY EXAMPLE: A 19" redundant cage, 120Vac would require the following module number:
MX1A-*-*-*-2

## MX SERIES SYSTEMS DESIGN CHART

| MX SYSTEMS DESIGN CHART |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SYSTEMS REQUIRED | $\begin{gathered} \text { CAGE } \\ \text { ASSY } \\ \text { SIZE } \\ \text { AND } \\ \text { CONFIG. } \end{gathered}$ | Use X-fer or Alarm Card |  |  | Use CC or MM |  | POWER MODULE | AVAIL $\underset{\substack{\text { C.- Current } \\ \text { F. future }}}{ }$ |
|  |  | X-FER <br> SWITCH |  | $\begin{aligned} & \hline \text { ALARM } \\ & \text { CARD } \end{aligned}$ | $\begin{gathered} \text { CONTROL } \\ \text { CARD } \end{gathered}$ | MASTER MODULE |  |  |
|  |  | 100Vac | G | H | L* or LL | Q* | P |  |
|  |  | 120 Vac | X | A | C* or CC | M* | P |  |
|  |  | 230 Vac | Z | F | $\mathrm{E}^{*}$ or EE | O* | R |  |
| $\begin{aligned} & \text { Redundant } \\ & \text { Upgradable } \\ & \text { 19" Cage } \end{aligned}$ | 1A | 0 or $1^{1,4}$ |  | 0 or $1^{1,4}$ | $0,1,2^{5}$ | 0 | up to $4^{3}$ | C |
| Redundant Upgradable 23" Cage | 2A | 0 or $1^{1,4}$ |  | 0 or $1^{1,4}$ | $0,1,2^{5}$ | 0 | up to $5^{3}$ | C |
| Expandable <br> 19" Cage | 1A | 0 or 1 |  | 0 | 0 | 1 | up to 3 | C |
| $\begin{array}{\|c\|} \hline \text { Expandable } \\ 23 " \text { Cage } \\ \hline \end{array}$ | 2A | 0 or 1 |  | 0 | 0 | 1 | up to 4 | C |
| Expandable <br> 7" Cage | 7B | 0 |  | 0 | 0 | 1 | 0 or 1 | C |
| Expandable <br> 9" Cage | 9B | 0 |  | 0 | 0 | 1 | up to 2 | C |
| Expandable <br> 19" Cage | 1B | 0 |  | 0 | 0 | 1 | up to 4 | C |
| $\begin{array}{\|c\|} \hline \text { Expandable } \\ 23^{\prime \prime} \text { Cage } \\ \hline \end{array}$ | 2B | 0 |  | 0 | 0 | 1 | up to 5 | C |
| Expandable 7" Cage | 7C | 0 or 1 |  | 0 | 0 | 1 | 0 | C |
| Expandable 9" Cage | 9C | 0 or 1 |  | 0 | 0 | 1 | 0 or 1 | F |
| $\begin{array}{\|c\|} \hline \text { Split Phase } \\ \text { 19" Cage } \\ \hline \end{array}$ | 1E | 0 |  | 0 | 0 | 2 | 0 or 2 | F |
| $\begin{array}{\|c\|} \hline \text { Split Phase } \\ 23 " \text { Cage } \\ \hline \end{array}$ | 2E | 0 |  | 0 | 0 | 2 | 0,2,4 | F |
| $\begin{array}{c\|} \hline \text { Split Phase } \\ \text { 7" Cage } \\ \hline \end{array}$ | 7E | 0 |  | 0 | 0 | 2 | 0 | C |
| 3 Phase 19" Cage | 1F | 0 |  | 0 or $1^{2}$ | 0 | 3 | 0 | F |
| 3 Phase 23" Cage | 2F | 0 |  | 0 or $1^{2}$ | 0 | 3 | 0 or 3 | C |
| 3 Phase <br> 9" Cage | 9F | 0 |  | 0 | 0 | 3 | 0 | C |

[^1]OUTPUT POWER

| CONTINUOUS <br> POWER | SURGE <br> POWER <br> (3 seconds) | NO LOAD <br> POWER | OUTPUT <br> VOLTAGE | OUTPUT <br> CURRENT | WEIGHT <br> LBS. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1000 W | 2200 W | 20 W | $230+/-6 \%$ | 4.3 | 7.5 |
| 1000 W | 2200 W | 20 W | $117+/-6 \%$ | 8.6 | 7.5 |
| 1000 W | 2200 W | 20 W | $100+/-6 \%$ | 10.0 | 7.5 |

INPUT

| MODEL <br> VOLTAGE | MINIMUM <br> (TYPICAL) | SYSTEM <br> (TYPICAL) | MAXIMUM <br> (TYPICAL) | TYPICAL <br> EFFICIENCY <br> @ FULL <br> POWER | PFEAK <br> EFFIIENCY <br> @ 1/3 <br> POWER |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 12 V | $10.4 / 10.6^{*}$ | 13.8 V | 17 V | $85 \%$ | $87 \%$ |
| 24 V | $19 / 21 \mathrm{~V}^{*}$ | 27.6 V | 34 V | $87 \%$ | $89 \%$ |
| 32 V | $26.5 / 28 \mathrm{~V}^{*}$ | 36.8 V | 45 V | $87 \%$ | $89 \%$ |
| 48 V | $41.5 / 42.5 \mathrm{~V}^{*}$ | 55.2 V | 62 V | $87 \%$ | $89 \%$ |
| 66 V | $57.5 / 58.5 \mathrm{~V}^{*}$ | 75.9 V | 94 V | $88 \%$ | $90 \%$ |
| 108 V | $94 / 95 \mathrm{~V}^{*}$ | 124 V | 149 V | $88 \%$ | $90 \%$ |

*indicates typical cut-off voltage/warning buzzer voltage

## GENERAL

| CONDITIONS | MINIMUM | TYPICAL | MAXIMUM |
| :---: | :---: | :---: | :---: |
| WAVEFORM | - | SINUSOIDAL | - |
| LINE REGULATION | - | $.1 \%$ | $.5 \%$ |
| LOAD REGULATION | - | $.3 \%$ | $.5 \%$ |
| DISTORTION | - | $1.5 \%$ | $2 \%$ |
| FREQUENCY* | $-.1 \%$ | NOMINAL | $+.1 \%$ |

*50, 60, 400Hz nominal
See www.exeltech.com for more data regarding MX Series inverters.

7317 Jack Newell Blvd North
Fort Worth, Texas 76118-7100 817.595.4969 voice, 817.595.1290 fax 800.886.4683 toll free
e-mail address info@exeltech.com e-mail address sales@exeltech.com website www.exeltech.com

# EXIETECH 

Manufacturer of True Sine Wave Power Inverters and Related Products

## XP SERIES POWER INVERTERS



XP 600

## - RACK MOUNT OPTIONAL



## XP SERIES PART NUMBERING SYSTEM

## EXELTECH XP SERIES MODEL NUMBER

Step 1: Model number always starts $\square$ with $X P$.

Step 2: To designate wattage enter the single character code 1 for 125,2 for 250, 6 for $600, \mathrm{~K}$ for 1100

Step 3: To designate output voltage enter the single character code from the Vac chart

| Vac OUTPUT VOLTAGE CHART |  |  |  |
| :---: | :---: | :---: | :---: |
| AC Volts | 100 | 120 | $230^{*}$ |
| Designation | 0 | 1 | 3 |




Step 4: To designate input voltage enter the single character code from the Vdc chart

| Vde Input voltage chart |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DC Volts | 12 | 24 | 32 | 48 | 66 | 108 |
| Designation | 1 | 2 | B | 4 | E | I |

Step 5: Output frequency is designated by using the first number of the frequency 5 for $50 \mathrm{~Hz}, 6$ for 60 Hz and 4 for 400 Hz

Step 6: This designates revision level (For EXELTECH use only). $\square$
Step 7: To designate option, enter the code from the option chart below. If no option is required please leave it blank.

| OPTION CHART |  |
| :--- | :---: |
| Option | Code |
| Conformal coating | 07 |
| Low idle current drain | $02^{*}$ |
| Circuit board with heat sink only | $04^{* *}$ |
| 50MS transfer relay | $20^{* * *}$ |

* available thru a distributor only(only on XP1100W)
**available for OEM's only
***available on XP600 and XP1100 only

EXAMPLE: XP600 with
117 Vac output, 12 Vdc input, 60 Hz with the conformal coating option would require the following model number: XP6-1-1-6-1-07


Page 10

## XP SERIES POWER INVERTER SPECIFICATIONS

OUTPUT POWER

| CONTINUOUS <br> POWER | SURGE <br> POWER | NO LOAD <br> POWER | OUTPUT <br> VOLTAGE | OUTPUT <br> CURRENT | WEIGHT <br> LBS. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 125 W | 150 W | 5 W | $100+/-6 \%$ | 1.2 | 2 |
| 125 W | 150 W | 5 W | $117+/-6 \%$ | 1.1 | 2 |
| $250 \mathrm{~W}^{* *}$ | 300 W | 6 W | $100+/-6 \%$ | 2.5 | 5 |
| $250 \mathrm{~W}^{* *}$ | 300 W | 6 W | $117+/-6 \%$ | 2.1 | 5 |
| $250 \mathrm{~W}^{* *}$ | 300 W | 7 W | $230+/-6 \%$ | 1.1 | 5 |
| $600 \mathrm{~W}^{* *}$ | 1100 W | 8 W | $100+/-6 \%$ | 6.0 | 6.5 |
| $600 \mathrm{~W}^{* *}$ | 1100 W | 8 W | $117+/-6 \%$ | 5.1 | 6.5 |
| $600 \mathrm{~W}^{* *}$ | 1100 W | 9 W | $230+/-6 \%$ | 2.7 | 6.5 |
| $1100 \mathrm{~W}^{* *}$ | 2200 W | $20 \mathrm{~W}^{*}$ | $100+/-6 \%$ | 11.0 | 10 |
| $1100 \mathrm{~W}^{* *}$ | 2200 W | $20 \mathrm{~W}^{*}$ | $117+/-6 \%$ | 9.5 | 10 |
| $1100 \mathrm{~W}^{* *}$ | 2200 W | $20 \mathrm{~W}^{*}$ | $230+/-6 \%$ | 4.8 | 10 |

*10W with X2 option
**remote switchable
INPUT POWER

| MODEL VOLTAGE | $\begin{aligned} & \text { MINIMUM }{ }^{1} \\ & \text { (TYPICAL) } \end{aligned}$ | SYSTEM (TYPICAL) | $\begin{aligned} & \text { MAXIMUM }{ }^{1} \\ & \text { (TYPICAL) } \end{aligned}$ | TYPICAL EFFICIENCY @ FULL POWER | PEAK EFFICIENCY <br> @ $1 / 3$ POWER |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 12V | 10.4/10.6* | 13.8 V | 16.5 V | 85\% | 87\% |
| 24 V | 19/21V* | 27.6 V | 33 V | 87\% | 89\% |
| 32V | $26.5 / 28 \mathrm{~V}^{*}$ | 36.8 V | 44 V | 88\% | 90\% |
| 48 V | $41.5 / 42.5 \mathrm{~V}$ | 55.2 V | 62V | 87\% | 89\% |
| 66 V | 57.5/58.5V* | 75.9 V | 91 V | 88\% | 90\% |
| 108V | 94/95V* | 125 V | 149V | 87\% | 90\% |

*Indicates typical cut-off voltage/warning buzzer voltage
$1+/-3 \%$
GENERAL

| CONDITIONS | MINIMUM | TYPICAL | MAXIMUM |
| :---: | :---: | :---: | :---: |
| WAVEFORM | - | SINUSOIDAL | - |
| VOLTAGE OUTPUT | $-5 \%$ | NOMINAL | $+5 \%$ |
| LINE REGULATION | - | $0.1 \%$ | $0.5 \%$ |
| LOAD REGULATION | - | $0.5 \%$ | $1 \%$ |
| DISTORTION | - | $1.5 \%$ | $2 \%$ |
| FREQUENCY | $-0.1 \%$ | NOMINAL | $+0.1 \%$ |

See www.exeltech.com for more data regarding XP Series inverters.

## MECHANICAL

Case size $(H x W x D)$
125 W case size $=2.16^{\prime \prime} \times 4.93^{\prime \prime} \times 7.90^{\prime \prime}$
$(2 \mathrm{lbs})$
250 W case size $=2.77^{\prime \prime} \times 5.23^{\prime \prime} \times 12.03^{\prime \prime}$
$(5 \mathrm{lbs})$
600 W case size $=3.57^{\prime \prime} \times 7.69^{\prime \prime} \times 12.10^{\prime \prime}$
$(6.5 \mathrm{lbs})$
1100 W case size $=3.57^{\prime \prime} \times 7.69^{\prime \prime} \times 15.05^{\prime \prime}$
$(10 \mathrm{lbs})$

OPTIONS

| XP Options: |
| :--- |
| - conformal coating (07 option) |
| - low idle current drain (02 option)* |
| - circuit board with heat sink only |
| (04 option) many other options |
| available for OEM applications, |
| consult factory. |

*1100 watt only

## PROTECTION CIRCUITRY

$\left.\begin{array}{|ll|}\hline \text { *Over Voltage: } & \begin{array}{l}\text { Shut off at maximum input } \\ \text { voltage, per input conditions. } \\ \text { Automatic reset upon fault } \\ \text { correction. }\end{array} \\ \text { *Under Voltage: } & \text { Shut off at minimum input } \\ \text { voltage, per input conditions }\end{array}\right\}$

## ENVIRONMENTAL

\(\left.\begin{array}{|ll|}\hline Temperature: \& -25 to 30 C full power <br>

derated above 30 \mathrm{C}\end{array}\right]\)| Humidity: | 5 to $95 \%$ non condensing |
| :--- | :--- |
| Altitude: | -200 to 10 k feet full power, <br> derated above 10k |
| Audible Noise: Less than 45dbA |  |
| Cooling: | 600W/1100W Thermo- <br> statically controlled <br> forced air. 125W/250W <br> convection cooled. |
| Finish: | Painted aluminum |
| Warranty: | Full year parts labor |

## EXIJECH

## 7317 Jack Newell Blvd North <br> Fort Worth, Texas 76118-7100 817.595.4969 voice, 817.595.1290 fax 800.886.4683 toll free <br> e-mail address info@exeltech.com e-mail address sales@exeltech.com website www.exeltech.com

## COMPANY PROFILE

EXELTECH was founded in 1990, based on the philosophy that efficiencies in the manufacturing process through product design, coordinated with facility layout, was paramount to productivity and the key to a quality product. Our mission is to provide leadership electronics and superior customer service through the merging of innovative designs with advanced Manufacturing technology.

Quality through design for manufactureability is a primary goal. Utilizing surface mount technology, all design and manufacturing is performed in our facility, located in FORT WORTH, TEXAS. "Pick and place" machines are set up with parts that are standard to all models, allowing for zero setup time and eliminating errors created when reloading or setting up machines. Only large capacitors and magnetics are placed by hand, in an effort to minimize human error through automation. Hand soldering is eliminated through the use of vapor phase reflow. Point to point wiring is eliminated with extensive use of PCB's to perform interconnectivity functions. The use of extruded aluminum for mechanics has reduced the number of nut/bolt and screw points to onefourth that of previous products, while increasing heat dissipation efficiency and lending a functional form factor to the product.

While design of the products to comply with automated manufacturing processes continues, our people remain the most important part of the quality equation. All employees go through a six month internship before becoming full-time staff members. All employees are cross trained for multi-task capability. Using a PULL system, each station performs a quality check on the performance of the previous station. Data for first time yield and DPU is recorded and analyzed by each station and test bench in an ongoing effort to yield a zero defect process. Upon final assembly, all products then proceed to A.L.T. for "accelerated life testing" to minimize "infant mortality". Packaging and shipping procedures are constantly evaluated to reduce damage.

All repairs are performed at the factory for quality feedback and input for future design. The net result of these philosophies is a line of products that demonstrates an MTBF(mean time between failure) in excess of 20 years and offers the most competitively priced true sine wave inverters available anywhere.

Our commitment to quality and total customer satisfaction has allowed EXELTECH to become innovators in the DC to AC power product market. A few of our "firsts" include; The smallest, lightest high frequency PWM sine wave inverter. The first "N+1" redundant inverter systems, "hot" swapable capability and "modular" design. Our many satisfied customers include AT\&T, BROOKHAVEN NATIONAL LABS, DIGITAL EQUIPMENT CORPORATION, MOTOROLA, MCI, GTE GOVERNMENT SYSTEMS and numerous federal and state agencies. We are found quite literally, around the world. We also provide back up power for the communications room in every U.S. Embassy worldwide.

Give us the opportunity to help solve your power problem.


7317 Jack Newell Blvd North Fort Worth, Texas 76118-7100 voice- 817.595.4969 fax- 817.595.1290 toll free- 800.886.4683
e-mail address info@exeltech.com e-mail address sales@exeltech.com


[^0]:    ${ }^{1}$ Alarm card is not an option on this configuration

[^1]:    ${ }^{1} 1$ per phase
    ${ }^{2}$ Alarm with a subset of functions (multi-phase option A13)
    ${ }^{3}$ System is not fully redundant with less than 3 power modules
    ${ }^{4}$ Minimum 1 Alarm Card or 1 X-fer Switch required for redundant system
    ${ }^{5}$ Minimum 2 Control Cards for redundant system.

